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Sep Kamvar’s monograph presents work from his 2004 thesis on how numerical algorithms are

a critical component in search systems. Kamvar focuses on the new information networks arising in

the late 1990s and early 2000s. When originally published, these results were groundbreaking and

resulted in an NSF press release1 and even a Slashdot listing. 2 The book is divided into two parts,

one for each of the two types of distributed networks discussed: the world-wide web (Part 1) and

peer-to-peer file sharing networks (Part 2). Chapter 1 includes a brief synopsis of these two parts;

indeed, it is much like the following two paragraphs of this review.

Part 1 focuses on the PageRank algorithm, a technique used by the Google search engine to

evaluate the quality of a web-page. Chapter 2 tersely introduces the overall PageRank idea, the

underlying PageRank Markov chain, and how the power method computes the PageRank vector,

which is the stationary distribution of the PageRank Markov chain. Chapter 3 presents a theorem on

the eigenvalues of the transition matrix of the PageRank Markov chain – the so-called Google matrix.

Using these eigenvalues, the next chapter analyses the condition number of a linear system to

compute thePageRankvector. Chapters5–7develop threedifferent techniques toaccelerate computing

thePageRankvectors. Thefirst technique (Chapter5) is anextensionof classic extrapolationapproaches

such as Aitkin extrapolation and quadratic extrapolation, albeit customized to the PageRank prob-

lem, which reduces the wall-clock time by 30%. The second technique (Chapter 6) capitalizes on the

different convergence behaviors of individual components of the PageRank vector. Some components

converge after only a few iterations and eliminating computation associated with these components

reduces the overall computation time. The final technique (Chapter 7) exploits block structure in

the PageRank matrix of the web-graph to develop a multi-level approach. Kamvar’s goal with these

three techniques is to accelerate PageRank to enable a scalablepersonalizedPageRankapproach,where

there is a PageRank vector for each user of the search engine. At the end of this chapter, he discusses

how BlockRank achieves this goal.

Part 2 tackles search in peer-to-peer file sharing networks, like those used in the original-

but-now-defunct Napster and Kazaa applications. In such systems, queries for information are prop-

agated among connected clients. After a query produces a result, the clients form a new connection

and transmit the information. Everything is decentralized in these networks. Consequently, reputable

behavior, which is accurately responding to queries and file transmission requests, is a prized com-

1 http://www.nsf.gov/od/lpa/news/03/pr0356.htm, last accessed on January 4, 2011.
2 http://developers.slashdot.org/story/03/05/14/2117231/Compute-Googles-PageRank-5-Times-Faster, last accessed on January 4,

2011; Slashdot is a popular technological news source partially known for the propensity of its articles to cause outages on websites

due to too many visitors – the “Slashdot” effect.
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modity. Chapter 8 begins the exploration by describing a realistic simulation system for a peer-to-peer

network; this system is used for the experimental evaluations in the remaining chapters. Using this

simulator, Chapter 9 evaluates a distributed trust and reputation protocol called EigenTrust because

of its relationship with an eigenvector. Chapter 10 introduces adaptive network topologies, whereby

clients try to find and connect to similar peers. The idea is that a well defined adaptive topology with

trust should move malicious peers (those that provide incorrect information) and free-riding clients

(those that only take information) to the periphery of the system. Thorough experimental evaluations

against a variety of different types of malicious behavior validate this protocol.

Not much of the text seems to have been edited from the 2004 thesis [4], or some of the original

articles. As such, this book is most appropriate for those with some prior background in mathematical

models and algorithms for ranking and reputation problems. Langville andMeyer’s book on PageRank

[5] would provide a good introduction. Indeed, Langville and Meyer devote Chapter 9 of their text to

a brief discussion of precisely the three techniques to accelerate PageRank from Chapters 5 to 7.

The book is written in a pleasant style, with clearly stated results. For example, the proof in Chapter

3 proceeds from the perspective of graph theory, Markov chain theory, and eigenvalue analysis. I find

this proof provides more insight into the problem structure than the purely algebraic proof found

in Langville and Meyer. The experimental results from Part 2 are likewise thoroughly and clearly

explained.

However, to compare the book against a broader, more recent, treatment is to miss the point. It

represents the research perspective of the early 2000s, when the question of how to accelerate PageR-

ank andmanage distributed reputationwere still open questions. It also represents a uniquely curated

collection of research ideas, many of which had only been distributed as Stanford technical reports [1–

3]. Thismeans itwill become an important, authoritative source for these topics. For example, I had not

been aware of the Ad extrapolation procedure in Chapter 5, which appears to be a highly competitive

algorithm for PageRank, or the author’s work on adaptive P2P topologies, which would also apply to

other distributed computations. Others researching network measures like PageRank and reputation

measures like EigenTrust will likely feel similarly, and this book should find a home on their shelves.

As a postscript to this review, please let me note that the author is donating the proceeds from

the book sales to the Gene Golub Memorial Fellowship and the Rajeev Motwani Foundation. Stanford

Professors Golub and Motwani were two of Kamvar’s collaborators and mentors, both of whom died

unexpectedly.
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